Compartir
Lea a continuación
La actual pandemia ha dado lugar a una demanda de miles de millones de máscaras faciales, y uno de los mejores materiales de filtrado para este tipo de máscaras es un laberinto de fibras diminutas hechas por el proceso de melt-blown (fibra no tejida). El mercado de máscaras faciales es muy amplio en este momento, pero los procesadores de extrusión deben evaluar los aspectos únicos de la fusión y presurización de polímeros incorporados en este proceso antes de dar el paso. Y debido a la naturaleza distintiva del proceso melt-blown, lo más probable es que necesiten comprar maquinaria nueva, ya que la mayoría de los equipos de extrusión existentes no son adecuados para procesar estos polímeros de baja viscosidad.
La microfibra hecha por el proceso melt-blown se intercala entre dos capas de tejido impermeable más convencional para hacer las máscaras. Aunque el PP es ahora el polímero más utilizado para este tipo de fibras, también se pueden utilizar otros polímeros de alto flujo, según los requisitos de filtrado. Hasta ahora, la mayoría de la producción de fibra melt-blown se ha utilizado para fabricar filtros industriales, particularmente para las industrias petrolera y química. Los polímeros utilizados tienen que proporcionar una alta fluidez para que puedan ser fácilmente estirados con el fin de hacer las fibras diminutas; las viscosidades varían de 300-1500 g/10 min, algo parecido a un jarabe caliente.
La fabricación de fibra melt-blown requiere alta presión de descarga del extrusor para forzar el polímero a través de los pequeños agujeros en las herramientas de troquel. Los troqueles son similares a un troquel de lámina, excepto que, en lugar de una hendidura, la cara tiene miles de agujeros diminutos, con 0.010 a 0.015 pulgadas de separación. Puede haber hasta 1000 agujeros por pie de ancho de troquel. Los agujeros pueden ser tan pequeños como 0.003 pulgadas de diámetro con L/D largos para proporcionar estabilidad. Incluso con la viscosidad extremadamente baja de los polímeros utilizados, la caída de presión a través de agujeros tan pequeños con L/D largos puede ser de varios miles de psi.
Una vez que las fibras de polímero salen de los pequeños orificios del troquel entran en una corriente de aire caliente supersónica, que estira las fibras y las aleatoriza antes de depositarlas en un tambor colector de vacío (ver ilustración). La corriente de aire caliente puede acercarse a 1000 pies/s, o ser superior a 680 millas/h. El aire está a la temperatura de fusión o por encima de ella, por lo que no enfría el fundido durante el estiramiento. La fase de estiramiento del proceso se produce muy rápidamente a una corta distancia, y las fibras terminan siendo dibujadas hasta un espesor final de 0.00001 a 0.000015 pulgadas de diámetro.
Las fibras estiradas se enfrían por aire refrigerado, se acoplan en el tambor del colector de vacío y se forman rollos. Las fibras en este punto se parecen mucho a los dulces de algodón. Se pueden obtener diferentes espesores, orientaciones y densidades variando una serie de condiciones de proceso. Muchas líneas también dan a las fibras una carga electrostática para mejorar su capacidad de retener las partículas atrapadas durante el uso.
¿Cuál es el mejor tipo de extrusor para este proceso? Debido a que el procesador requiere el uso de polímeros extremadamente altos de flujo y baja viscosidad, las extrusoras de diámetro liso tendrán dificultades para desarrollar las presiones de descarga necesarias a velocidades de salida razonables. Hay dos maneras de mejorar ese rendimiento. Los fabricantes europeos de extrusoras han utilizado cilindros ranurados para desarrollar altas presiones de cabeza, mientras que los constructores estadounidenses han tendido hacia L/D más largos, y más recientemente, a agregar bombas de fusión. Hay ventajas y desventajas para cada enfoque, de las que hablé en una columna que apareció en la edición de marzo de 2015.
Hace poco realicé una consultoría para una empresa que trataba de expandirse rápidamente en la fabricación de cubrebocas mediante la tecnología melt-blown. Se sorprendieron de lo poco útiles que eran sus equipos de extrusión existentes sin modificaciones significativas. Por lo tanto, para reducir el costo de las líneas y acelerar la disponibilidad de equipos, este procesador decidió comenzar con algunos extrusores de barril ranurado con tornillos especiales adecuados para los polímeros de alto flujo.
Se necesitarán diseños de tornillo especiales, independientemente de si un procesador utiliza un extrusor de barril ranurado o un extrusor de diámetro liso con una bomba de fusión para desarrollar la presión de troquel necesaria. Los polímeros con bajas viscosidades de fusión todavía se funden a las mismas temperaturas y requieren la misma cantidad de energía para fundir que acostumbran los procesadores de extrusión de materiales. Los tornillos extrusores introducen la mayor parte de su energía en el polímero para fundirlo a través de la disipación viscosa o la acción de cizallamiento del tornillo giratorio en el polímero. La cantidad de potencia introducida es proporcional a la viscosidad del polímero y la consistencia para un diseño de tornillo determinado.
En otras palabras, para obtener suficiente salida y cizallamiento para procesar polímeros de baja viscosidad, los tornillos extrusores necesitan canales muy superficiales y altas rpm, una combinación que hoy es muy atípica en la mayoría de los equipos en funcionamiento.
Acerca del autor
Jim Frankland
Jim Frankland es un ingeniero mecánico que ha estado involucrado en todo tipo de procesos de extrusión durante más de 40 años. Ahora es presidente de Frankland Plastics Consulting, LLC. Contacto: jim.frankland@comcast.net o (724) 651-9196.
Contenido relacionado
Diseño de tornillos ventilados para extrusoras: guía completa
El diseño de zonas de ventilación para extrusoras de un solo tornillo requiere comprender el flujo del polímero en los canales del tornillo. Algunos diseños son más eficaces que otros. Aquí diversas pautas.
Leer MásExtrusión: solución de problemas del desgaste de tornillos y cilindros
Mantener extrusoras de un solo tornillo al máximo rendimiento supone un desafío constante. El desgaste del tornillo puede reducir la eficiencia de la máquina, manifestándose en aumentos de temperatura y disminuciones en la velocidad de producción. Este artículo expone las técnicas para medir y combatir el desgaste, así como las decisiones económicas asociadas al reemplazo de componentes.
Leer MásExtrusión de plásticos: entienda la viscosidad y temperatura de fusión
Comprenda cómo la viscosidad y la temperatura influyen en la extrusión de plásticos y su relación con las curvas de velocidad de cizallamiento.
Leer MásEnfriamiento en extrusión: ¿cuánta agua es necesaria?
Existe poca información sobre la cantidad de agua necesaria para para enfriar la garganta de alimentación y el husillo. Este artículo explora los desafíos del enfriamiento en la extrusión y proporciona información útil para optimizar el proceso.
Leer MásLea a continuación
Lo que debe saber sobre los tornillos de extrusión en miniatura
Los tornillos muy pequeños se han vuelto más comunes con el crecimiento de la manufactura aditiva. El diseño de estos tornillos requiere equilibrar sus requisitos de producción con su resistencia al torque.
Leer MásExtrusión: la importancia de la temperatura del cilindro en la primera zona
Ajustar la configuración de temperatura de las primeras zonas del cilindro puede no producir el resultado deseado. De hecho, puede tener el efecto contrario. Este es el porqué.
Leer MásEcuaciones importantes de fusión de polímeros para procesadores por extrusión
Cuanto más sepa sobre lo que sucede en un tornillo, más podrá trabajar con su proveedor para optimizar el diseño.
Leer Más