Plastics Technology México
Publicado

Azocompuestos, ácido cítrico y quitosano para fabricación de baterías

Nuevos desarrollos permiten avanzar en la generación de polímeros con propiedades ópticas no lineales (NLO).

José Antonio Sánchez Fernández, CIQA.

Compartir

El desarrollo de polímeros emisores de luz generalmente se ve obstaculizado por inconvenientes inherentes, como problemas de fotodecoloración, estabilidad y funcionalización. Incluso la formación de partículas de polímeros luminiscentes biocompatibles a menudo conlleva procesos químicos de reticulación y/o dopaje con compuestos que tienen grupos que imprimen color a los materiales llamados cromóforos susceptibles de lixiviación y fotodecoloración.

Nuevos materiales que imitan la estructura de una hoja verde ayudan a los cromóforos sensibles a la luz a convertirla de un estado de baja energía a otro de alta energía, un proceso conocido como conversión ascendente [1].

Según los investigadores, el “nanopaper” con forma de hoja protege a estos tintes al daño del oxígeno, lo que podría ayudar a que las celdas solares y los dispositivos fotocatalíticos alcancen altas eficiencias, incluyendo los materiales usados para el desarrollo de baterías.

Una forma de conversión ascendente utiliza dos tipos de moléculas fotocrómicas: un sensibilizador y un emisor. Una molécula sensibilizadora absorbe los fotones de baja energía para alcanzar un estado excitado. Un emisor se excita luego a través de una transferencia de energía desde el sensibilizador. A través de una serie de transferencias de energía entre las moléculas emisoras, algunas son impulsadas a un estado de excitación aún mayor. Cuando una de estas moléculas emisoras superexcitadas se relaja de nuevo a un estado de menor energía, transforma a la estructura química fotocrómica a un estado estructural que propicia la liberación de un fotón de alta energía.

Landfester y sus colegas [2], entre ellos Stanislav Baluschev [3], de la Universidad de Sofía, en Bulgaria, y Anna J. Svagan [4], de la Universidad de Copenhague, pensaron que imitar la estructura de una hoja podría ayudar a resolver este problema. Las hojas encapsulan la clorofila dentro de los cloroplastos para proteger contra el daño del oxígeno durante la fotosíntesis.

De manera similar, los investigadores pensaron que las nanofibras de celulosa derivadas de las plantas podrían encapsular y proteger los tintes sensibles a la luz. Ellos y sus colegas empacaron varios colorantes, cinco sensibilizadores y un emisor, en cápsulas de nanocelulosa de aproximadamente 1,2 μm de diámetro y luego las incrustaron en una matriz de nanofibras de celulosa. Las sustancias cromoforas se eligieron para absorber la luz en el rango de longitud de onda de color rojo intenso y luego emitir luz verde después del proceso de conversión ascendente. El andamiaje similar a una lámina de los nanomateriales de celulosa resultó en un “nanopaper” flexible que emitió luz azul-verde cuando se excitó con luz de
banda ancha. El material continuó esta conversión ascendente de manera eficiente en el aire durante al menos una hora. Como comparación, el equipo integró el mismo conjunto de tintes en una película de poliestireno, que es más permeable al oxígeno que las nanofibras de celulosa, y encontró que la conversión ascendente duró solo unos segundos o minutos.

Nosotros describimos la formación de partículas fosforescentes ajustables por tamaño a través del autoensamblaje de quitosano, un biopolímero abundante en la naturaleza, este se funcionaliza con ácido cítrico que contiene cargas iónicas negativas (aniones) que influyen a la complejación polielectrolítica de
un cromóforo con grupos químicos funcionales donadores y aceptores de electrones. El autoensamblaje in situ de nanopartículas de quitosano fosforescentes habilitado por esos cromóforos desempeña una función cuádruple: un reticulador físico, como emisor de luz, como sensor de anillos de polisacáridos con estructuras similares a las de algunos marcadores de cáncer y agente de contraste para microscopía electrónica, y como parte de dispositivos fotoluminiscentes (PL).

La capacidad de ajuste de tamaño en partículas de quitosano fosforescentes se logró mediante variaciones sistemáticas en el pH o concentraciones de reactantes. El cromóforo exhibe el cambio de PL “on-off” inducido por varios polímeros lineales que contienen aminas, lo que hace que los nanocompuestos fosforescentes sean particularmente atractivos para aplicaciones de detección e imagen biológica. Finalmente, la combinación de cromóforo-ácido cítrico-quitosano da lugar a películas delgadas de emisión blanca con un alto índice de reproducción cromática, una estabilidad notable y rendimientos cuánticos de PL tan altos como el 78% con <2% de fotodecoloración. Estas propiedades hacen que tales películas finas sean útiles para aplicaciones en iluminación y pantallas electrónicas.

En la Figura 1, se presenta al quitosano (a) que se funcionaliza con ácido cítrico para usarlo con diferentes compuestos cromóforos (b) y (c).

El estudio de nuevos cromóforos con la finalidad de obtener polímeros con propiedades ópticas no lineales (NLO) es motivado por el deseo de preparar polímeros completamente funcionalizados con propiedades eléctricas a un bajo costo, logrando con ello obtener dispositivos de alto desempeño que almacenen energía, inclusive. Con lo que se logró desarrollar materiales con características de modular de la frecuencia de la luz y amplificarla. Según Por otra parte, utilizar longitudes de onda de luz que pasan a través de moléculas orgánicas sin absorberla, es decir que no entran en el estado de excitación, conduce a la reactividad de otros, haciendo más interesante incluir en la misma a grupos químicos funcionales con efecto fotocrómico como los azocompuestos que cambian su forma geométrica por efecto de la luz.

Referencias

[1] Svagan, A. J. y otros, 2014. Photon Energy Upconverting Nanopaper:
A Bioinspired Oxygen Protection Strategy. ACS Nano, 8(8), pp.
8198-8207.
[2] Yang, L., L. y otros, 2019. A Reversible Proton Generator with On/
Off Thermoswitch. Macromol. rapid Comm., 40(6), p. 1800713.
[3] Filatov, M. A. y otros, 2015. Interplay between singlet and triplet
excited states in a conformationally locked donor-acceptor dyad.
Dalton Trans., 44(44), pp. 19207-19217.
[4] Paulraj, T. y otros, 2018. Porous Cellulose Nanofiber-Based
Microcapsules for Biomolecular Sensing. ACS Appl. Mater. Interfaces,
10(48), pp. 41146-41154.

Plastics Technology México
Plastec USA Inc.
Wittmann
Meximold
Woojin Plaimm Co., Ltd.
Reiloy USA
American Industrial Products
BYK Chemie de Mexico S. de R.L. de C.V.
HASCO Normalien Mexico S.A. de C.V.
Taiwan External Trade Development Council (TAITRA)
Maguire
Conair makes every pellet count

Contenido relacionado

Qué se hace con la basura plástica según la escalera de Lansink

Una mirada a los principales métodos que existen para tratar los plásticos postconsumo. Conozca de qué se trata la escalera de Lansink, un esquema usado en países industrializados y que representa la preferencia de acciones para el tratamiento de residuos plásticos.      

Leer Más
Reciclaje

IDRG lleva el reciclaje de plásticos a industrias de alto nivel

IDRG se dedica al reciclaje de diversos tipos de plásticos, incluidos polipropilenos (PP), polietilenos de alta densidad (HDPE) y polietilenos de baja densidad (LDPE). Con la meta de llegar a las exigentes industrias farmacéutica, de cosméticos y de alimentos, está refinando sus procesos y ha obtenido estrictas certificaciones, como la carta de no objeción de la FDA.

Leer Más

Innovación automotriz: México brilla en los premios SPE

Descubra el impacto del talento mexicano en la innovación automotriz. Acompáñenos a explorar la vanguardia en la aplicación de plásticos para la fabricación de autopartes y componentes automotores, con lo más destacado en sustentabilidad, materiales y desempeño de la 52ª edición de los SPE Automotive Innovation Awards 2023.

Leer Más

Certificación de plástico reciclado: ruta hacia una producción responsable

Esta es una guía completa sobre el proceso de certificación de plástico reciclado. Conozca los diferentes tipos de certificaciones, sus beneficios y cómo obtenerlas.

Leer Más

Lea a continuación

Secado de plásticos

Manejo de materiales eficiente: eje de la productividad en HellermannTyton

El ahorro de energía, la reducción de costos y la organización en planta son solo tres de las ventajas que ofrecen los sistemas centralizados de secado y transporte de plásticos. Para entender cómo estos sistemas son un componente clave en la eficiencia y la productividad visitamos en Monterrey la planta de HellermannTyton.

Leer Más
Moldeo por soplado

Moldeo por soplado: guía completa y preguntas frecuentes

¿Está interesado en el moldeo por soplado? Conozca las ventajas, desventajas y fundamentos de este proceso de transformación de plásticos.

Leer Más
Moldeo por inyección

Innovación en empaques de pared delgada: tecnología y sostenibilidad

El mercado global de envases de pared delgada está en constante evolución y abarca una amplia gama de aplicaciones y materiales. En el presente artículo exploraremos este mercado, su crecimiento, tendencias emergentes, impacto de la pandemia por COVID-19 y sus proyecciones para los próximos años según un reciente estudio publicado por Mordor Intelligence.

Leer Más
Plastics Technology México
;