Plásticos de ingeniería

Los plásticos de ingeniería son una categoría de polímeros que normalmente se utilizan en aplicaciones más exigentes que las resinas comerciales. Por lo general, tienen propiedades que ofrecen un mayor rendimiento, como resistencia al calor, a los productos químicos y al impacto, lo que los hace muy adecuados para reemplazar metales y otros materiales en una amplia gama de aplicaciones eléctricas/electrónicas, automotrices, aeroespaciales, médicas e industriales. Incluyen resinas de ingeniería de volumen ABS, PC y nailon 6 y 66, así como PBT, PEEK, PPO, PPS, nailon de alta temperatura como PPA (poliftalamida), POM y LCP.

Innovaciones en el uso del caucho de silicona líquida LSR
Plásticos de ingeniería

Innovaciones en el uso del caucho de silicona líquida LSR

El caucho de silicona líquida (LSR) continúa posicionándose como un material clave en la manufactura avanzada. Sus propiedades lo hacen ideal para aplicaciones críticas en sectores como el médico, automotriz y de manufactura aditiva. Este artículo explora cómo estas características únicas están transformando procesos y abriendo nuevas posibilidades de diseño.

Leer Más

Lecturas esenciales

Poliésteres PBT y PET: la cristalinidad hace la diferencia

Descubra las diferencias clave entre los poliésteres PBT y PET en términos de química, estructura y aplicaciones industriales.

Leer Más

Procesamiento y aplicaciones del poliuretano

Conozca cómo el poliuretano está transformando la industria con desarrollos en biopoliuretanos y reciclaje avanzado. Aprenda sobre las aplicaciones sostenibles que están marcando la diferencia y cómo solucionar retos de procesamiento.  

Leer Más

Plásticos en la industria automotriz: aspectos clave de sustentabilidad

¿Sabía de la consideración de los materiales bioplásticos en el sector automotriz? ¿Conoce el potencial de reciclabilidad de los plásticos de componentes automotrices? 

Leer Más

Historia de los polímeros: policarbonato

Descubra la historia del policarbonato, un material revolucionario en transparencia, resistencia al calor y dureza. Conozca su evolución y aplicaciones.

Leer Más

Historia de los polímeros: nailon

Conozca la historia del nailon (nylon), el primer termoplástico de ingeniería.

Leer Más

Historia de los polímeros: PVC y PVDC

El PVC y otros polímeros clorados han sido parte de la química de los materiales durante casi 100 años. El PVC fue sintetizado por primera vez en la década de 1830, pero no se utilizó comercialmente hasta que se descubrieron los plastificantes para PVC en la década de 1920.

Leer Más
Plastics Technology México
Nexeo Plastics Mexico S. de R.L. de C.V
Conair makes every pellet count
Plastics Technology México

Artículos

Ver Todos

Respuestas clave sobre nylon en propiedades, usos y ventajas

Resuelva las dudas más frecuentes sobre el nailon o nylon: desde sus orígenes y propiedades técnicas hasta sus ventajas frente a otros plásticos de ingeniería. ¿Es nylon o nailon?

Leer Más
Bioplásticos

Innovaciones en fotodecoloración y estabilidad de polímeros

Investigadores han desarrollado un nuevo “nanopaper” que imita la estructura de las hojas para proteger cromóforos sensibles a la luz, mejorando significativamente la eficiencia de las celdas solares y dispositivos fotocatalíticos.

Leer Más

Historia de los polímeros: policetona alifática

La policetona alifática, un material al que no se le presta mucha atención, es similar en su química a los náilones, poliésteres y acetales.

Leer Más

Innovaciones en reciclaje de espuma de poliuretano

Empresas como Dow, BASF y Covestro están adoptando estrategias innovadoras para avanzar hacia la sostenibilidad en el suministro de poliuretanos. Mediante el reciclaje avanzado y el uso de biomasa, estas compañías buscan procesos de producción más sustentables y eficientes.  

Leer Más
Aditivos

Fundamentos de la medición del color en plásticos

Conozca la importancia de la medición del color en la industria del plástico y una visión general de los instrumentos y tecnologías involucradas.

Ver

¿Qué es el poliestireno (PS)? tipos y aplicaciones desglosadas

Conozca los diferentes tipos de poliestireno (GPPS, HIPS, EPS) y sus variadas aplicaciones en sectores como la salud, construcción y electrónica.

Ver
Reiloy USA
Plastics Recycling LATAM
Maguire
Maguire Products, Inc.

Últimas noticias y productos

Perstorp expandirá producción de ésteres sintéticos

Perstorp avanza en la producción de ésteres sintéticos sostenibles, destacándose en sectores emergentes como la refrigeración de centros de datos y soluciones biodegradables.  

Leer Más

Teknor Apex y Nexeo Plastics fortalecen su colaboración

Teknor Apex y Nexeo Plastics amplían su asociación, ofreciendo una gama más amplia de materiales avanzados como poliamidas, TPU y poliésteres en la región EMEA.

Leer Más

Orbia Alphagary expande operaciones en México

Orbia Alphagary aumenta su capacidad en México con una nueva línea de producción para materiales con certificación FDA, dirigida a sectores de salud y alimentos.

Leer Más

IKEA integra plásticos reciclados y renovables en sus productos

IKEA ha consolidado la sostenibilidad como una estrategia central en su negocio, integrando plásticos reciclados y renovables en su producción y apuntando a eliminar empaques plásticos para 2028 y usar solo materiales sostenibles para 2030.

Leer Más

Alianza para material 3D sustentable entre Asahi Kasei y Aquafil

Un innovador compuesto para impresión 3D surge de la alianza entre Asahi Kasei y Aquafil, combinando ECONYL reciclado y nanofibra de celulosa.

Leer Más

EMS-Grivory triunfa en la Noche de Premios Automotrices 2024

EMS-Grivory recibió tres premios en la 22ª Noche de Premios Automotrices SPE por sus innovaciones en plásticos para la reducción de peso y mejora de rendimiento.

Leer Más
HASCO Normalien Mexico S.A. de C.V.
Wittmann
Woojin Plaimm Co., Ltd.
Woojin Plaimm Co., Ltd.

FAQ: Plásticos de ingeniería

¿Qué es una resina de ingenieria?

Las resinas de ingeniería, también conocidas como plásticos de grado de ingeniería, son una clase de polímeros de alto rendimiento. Están especialmente formuladas para tener propiedades superiores en términos de mecánica, térmica, eléctrica y química. Se utilizan en situaciones donde los plásticos comunes podrían no alcanzar los estándares de rendimiento necesarios.

Estas resinas de alto rendimiento están diseñadas para equilibrar una variedad de propiedades como la fuerza, durabilidad, resistencia al calor y a los químicos, así como la estabilidad dimensional y otras características especializadas.

¿Cuáles son los tipos más comunes de plásticos de ingeniería?

  1. Nylon (Poliamida - PA): Ofrece excelente resistencia al desgaste y buena capacidad de amortiguación. Se utiliza en aplicaciones como engranajes, cojinetes y componentes automotrices.

  2. Policarbonato (PC): Conocido por su transparencia y resistencia al impacto excepcionales, es utilizado en aplicaciones que requieren alta visibilidad y durabilidad, como en escudos protectores y componentes ópticos.

  3. Polioximetileno (POM), también conocido como Acetal: Este material tiene una alta resistencia al deslizamiento y la fatiga, ideal para piezas de precisión en mecánica, como engranajes y cierres rápidos.

  4. Polietileno de alta temperatura (PEI): Conocido por su capacidad para soportar temperaturas elevadas, se usa en aplicaciones que requieren estabilidad térmica y eléctrica.

  5. Polibutileno tereftalato (PBT): Este plástico es valorado por su resistencia al calor y estabilidad dimensional, utilizado comúnmente en componentes eléctricos y carcasas.

  6. Polisulfuro de fenileno (PPS): Excelente resistencia química y térmica, utilizado en componentes automotrices y de electrodomésticos que requieren durabilidad a altas temperaturas.

  7. Sulfuro de polifenileno (PPSU) y Poliéter éter cetona (PEEK): Ambos son conocidos por su resistencia extrema a altas temperaturas y ambientes químicos agresivos, usados en aplicaciones médicas, aeroespaciales y en la industria petrolera.

  8. Poliuretanos (PU): Son versátiles con variantes que van desde espumas flexibles hasta plásticos rígidos, usados en una amplia gama de aplicaciones como aislamiento, componentes automotrices y suelas de calzado.

¿Cómo se diferencian los plásticos de ingeniería de los plásticos comunes?

Los plásticos de ingeniería se diferencian de los plásticos ordinarios por sus superiores propiedades de resistencia mecánica y térmica. Pueden resistir temperaturas de 100 grados o más, y los superplásticos de ingeniería pueden soportar hasta 150 grados. Estas capacidades les permiten crear productos con requisitos técnicos avanzados y reemplazar metales y cerámicas en aplicaciones industriales.

A diferencia de los plásticos comerciales, los plásticos de ingeniería pueden soportar extremas condiciones mecánicas y ambientales. Aunque tienen una amplia gama de aplicaciones, su producción es menos masiva, pues se fabrican en menores cantidades para satisfacer necesidades específicas.

¿Cuáles son las propiedades mecánicas de los plásticos de ingeniería?

Las propiedades mecánicas y físicas de los plásticos de ingeniería son múltiples y variadas, lo que los hace aptos para diferentes aplicaciones y productos finales. Estas propiedades incluyen:

  • Resistencia a la abrasión: los plásticos de ingeniería son capaces de soportar desgaste y fricción sin sufrir daños significativos.
  • Resistencia química: son capaces de resistir la corrosión y el deterioro causados por distintos productos químicos.
  • Estabilidad dimensional: mantienen su forma y tamaño incluso cuando son expuestos a diferentes condiciones de temperatura y humedad.
  • Propiedades eléctricas: tienen la capacidad de resistir la conducción eléctrica, lo que los hace seguros para su uso en aplicaciones eléctricas.
  • Baja inflamabilidad: estos plásticos son difíciles de encender y no propagan fácilmente el fuego.
  • Compatibilidad alimentaria: algunos plásticos de ingeniería son seguros para su uso en contacto con alimentos.
  • Fuerza de impacto: tienen la capacidad de resistir fuerzas de impacto sin romperse.
  • Resistencia térmica: los plásticos de ingeniería pueden funcionar eficientemente en un amplio rango de temperaturas.
  • Propiedades ópticas: algunos son translúcidos o transparentes, lo que permite su uso en aplicaciones que requieren transparencia.
  • Hidrófugos: son capaces de repeler el agua.
  • Propiedades deslizantes: poseen una baja fricción superficial, lo que facilita su deslizamiento.
  • Excelente maquinabilidad: pueden ser fácilmente formados y moldeados en formas complejas.
  • Buena resistencia al desgaste: soportan bien el desgaste continuo.

¿Cuáles son los desafíos y consideraciones de reciclaje para los plásticos de ingeniería?

  • Complejidad del proceso: la ausencia de un diseño orientado al reciclaje y el uso de aditivos hacen que el reciclaje de estos plásticos sea una tarea compleja. Por ello, se requieren técnicas de vanguardia para obtener polímeros reciclados de alta calidad.
  • Variabilidad del proceso de reciclaje: el procedimiento para reciclar los plásticos de ingeniería puede variar en función del tipo específico de plástico.
  • Recuperación de energía: cuando el reciclaje de plásticos de ingeniería no es factible o económicamente viable, estos pueden utilizarse como fuente de energía.
  • Variabilidad regional de la infraestructura y capacidades de reciclaje: la infraestructura y las capacidades de reciclaje para los plásticos de ingeniería pueden variar según la región y el tipo específico de plástico. Por ello, es importante consultar con las instalaciones de reciclaje locales o las autoridades de gestión de residuos para determinar los métodos de reciclaje más adecuados disponibles en cada área.
HASCO Normalien Mexico S.A. de C.V.

Proveedores de Plásticos de ingeniería

Conair